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We investigate the properties of almost limiting short-crested gravity waves with
harmonic resonance for various incident angles. When the incident angle is less than
47.5◦, the enclosed crest angle in non-resonant limiting waves is 90◦, which corresponds
to that in standing waves. In contrast, when the incident angle exceeds 47.5◦, the
enclosed crest angle in non-resonant limiting waves is 120◦, which corresponds to
that in two-dimensional progressive waves. The enclosed crest angle is 90◦ in resonant
limiting waves for all incident angles. The crest becomes flatter than the trough
in resonant limiting waves if the fundamental mode has a different sign from its
harmonic resonant mode. Bifurcation of short-crested waves is also investigated.

1. Introduction
Three-dimensionality is important in nature because three-dimensional water waves

occur more frequently in nature than two-dimensional ones. Weakly nonlinear three-
dimensional water waves in shallow water have been actively investigated for a
few decades (Akylas 1994). In particular, long waves propagating predominantly
in one direction have been studied in detail because their time-evolution equation,
called the Kadomtsev–Petviashvili (KP) equation, has been derived. The KP equation
extends the Korteweg–de Vries equation by incorporating weakly three-dimensional
effects. However, there have been few studies that go beyond weakly nonlinear
theory in shallow water (Tanaka 1993). In deep water, even weakly nonlinear three-
dimensional water waves have not been investigated to the same degree because the
two-dimensional coupled nonlinear Schrödinger equation, which corresponds to the
KP equation, has a serious defect of energy leakage, which means that the energy
initially confined to the uniform wavetrain and a pair of unstable perturbation modes
eventually spreads to arbitrarily high modes (Martin & Yuen 1980). Many studies
on short-crested waves have investigated wave profiles having moderate rather than
large amplitudes (Hsu, Tsuchiya & Silvester 1979; Kimmoun, Branger & Kharif
1999; Ioualalen et al. 2006) and their stability (Ioualalen & Kharif 1993; Dias &
Kharif 1999; Ioualalen & Okamura 2002). Therefore, with the exception of the study
on highly nonlinear short-crested waves in deep water by Roberts (1983), there is
insufficient information on highly nonlinear three-dimensional water waves for both
shallow and deep water.

The purpose of the present paper is to clarify the characteristics of limiting short-
crested waves in deep water. Linearly, a short-crested wave is defined as superposition
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of an incident two-dimensional progressive wave with an incident angle θ and its
reflected wave. Hence, a short-crested wave tends to a two-dimensional progressive
wave and a two-dimensional standing wave as θ → 90◦ and θ → 0◦, respectively. Since
the pioneering work by Yamada (1957), two-dimensional limiting progressive waves
have been investigated in detail (Okamoto & Shoji 2001). The enclosed crest angle
of the limiting wave is 120◦ with a maximum wave steepness of 0.44316 (Williams
1981). Few studies have been conducted on limiting standing waves (Dias & Bridges
2006). Of these studies, three have estimated the maximum wave steepness of limiting
standing waves: 0.6202 (Mercer & Roberts 1992), 0.641 (Tsai & Jeng 1994) and 0.6272
(Okamura 2003). These three values vary by about 3 %, whereas the maximum wave
steepness of two-dimensional progressive waves has been estimated with an error of
less than 0.01 %. The limiting wave profile of the standing wave has a sharp crest,
and it has been shown to have an enclosed crest angle of 90◦ analytically by Penney
& Price (1952) and Okamura (1998) and numerically by Tsai & Jeng (1994) and
Okamura (2003). In two-dimensional progressive waves, the sharpness at the crest
disappears after a transformation, whereas there is no useful transformation that
removes the singular point at the sharp crest of standing waves. Thus, it is difficult
to numerically obtain limiting standing waves.

There are two difficulties in obtaining the profile of a short-crested wave. One
difficulty is caused by the radius of convergence being much smaller than the
maximum wave steepness. The other difficulty is associated with the division by
zero due to harmonic resonance. Harmonic resonance occurs if the linear wave
frequency Ω(kx, ky) of the short-crested wave satisfies Ω(jkx, lky) = jΩ(kx, ky), where
Ω(kx, ky) = g(k2

x+k2
y)

1/4 is the linear dispersion relation. The Padé approximant method
overcomes the former difficulty and is useful for obtaining finite-amplitude non-
resonant short-crested waves, with the exception of very-large-amplitude waves.
However, it is unable to overcome the second difficulty (Roberts 1983). Finite-
amplitude resonant short-crested waves can be calculated by another method that
includes the collocation method (Okamura 1996; Ioualalen et al. 2006), which was
proposed by Tsai & Jeng (1994) for standing waves. This method resolves the two
above-mentioned difficulties but it is not useful for obtaining very-large-amplitude
waves. Here, the Galerkin method proposed by Okamura (2003) for standing waves
is used instead of the collocation method to calculate almost limiting short-crested
waves.

The present paper is organized as follows. In § 2, we present the formation of
the problem. In § 3, a numerical method is introduced for computing short-crested
waves and two-dimensional progressive waves. In § 4, we evaluate the reliability of
the solutions by examining their convergence and by investigating the enclosed crest
angles of limiting waves for the standing wave and the two-dimensional progressive
wave. In § 5, we present the maximum wave steepness, bifurcation diagrams and
almost limiting wave profiles for various incident angles. Section 6 summarizes the
findings.

2. Formulation of the problem
We consider the three-dimensional irrotational flow of an inviscid and

incompressible fluid to treat one of the simplest three-dimensional progressive water
waves, the short-crested wave. Surface tension effects are omitted, although they
become important near a sharp crest even for small capillarity (Dias & Kharif 1999;
Perlin & Schultz 2000). To express all the equations in non-dimensional form, we
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introduce the following dimensionless quantities

(x∗, y∗, z∗, H ∗) = K(x, y, z, η), t∗ = ωt, Φ∗ =
K2

ω
φ, G =

K

ω2
g, (2.1)

where x and y are the horizontal coordinates, z is the vertical coordinate, η(x, y, t)
is the surface elevation, K is the wavenumber of the incident wave, ω is the wave
frequency of the short-crested wave to be treated, φ(x, y, z, t) is the velocity potential
and g is the gravitational acceleration. Note that the dimensionless quantity G depends
on the unknown ω. Because we assume that the short-crested wave propagates in
the x direction without any change in its form, it is useful to introduce a moving
coordinate system

T = px∗ − t∗, Y = qy∗, Z = z∗,

where p = sin θ and q = cos θ . Note the relations

kx = K sin θ, ky = K cos θ, tan θ = kx/ky,

where (kx, ky) is a wavenumber vector of the short-crested wave. Thus, we can treat
the short-crested wave with a period of 2π in T and Y . By introducing

Φ(Y, Z, T ) = Φ∗(x∗, y∗, z∗, t∗), H (Y, T ) = H ∗(x∗, y∗, t∗),

we obtain non-dimensional governing equations in the moving coordinate system as
follows. Laplace’s equation

p2ΦT T + q2ΦYY + ΦZZ = 0 for Z < H (Y, T ), (2.2)

the dynamic boundary condition

P (Y, Z, T ) = −ΦT +
1

2

(
p2Φ2

T + q2Φ2
Y + Φ2

Z

)
+ GZ = 0 on Z = H (Y, T ), (2.3)

the kinematic boundary condition

Q(Y, Z, T ) = ΦT T + p2ΦT

(
−2ΦT T + p2ΦT ΦT T + q2ΦY ΦYT + ΦZΦZT

)
+ q2ΦY

(
−2ΦYT + p2ΦT ΦYT + q2ΦY ΦYY + ΦZΦYZ

)
+ ΦZ

(
−2ΦZT

+ p2ΦT ΦZT + q2ΦY ΦYZ + ΦZΦZZ + G
)

= 0 on Z = H (Y, T ), (2.4)

and the bottom boundary condition

ΦZ → 0 as Z → −∞, (2.5)

where Z = H (Y, T ) gives the surface shape of the short-crested wave. Condition (2.4)
corresponds to DP/Dt = 0, which expresses that the rate of change of the pressure
following a particle on the free surface must vanish. This condition is much more
complicated than the usual one. It is, however, very useful for obtaining the limiting
short-crested wave with a sharp crest numerically because it does not contain any
space derivatives of the free surface such as HY in (2.4) (Tsai & Jeng 1994; Okamura
2003). We impose the velocity potential on two periodic conditions:

Φ(Y, Z, T ) = Φ(Y + 2π, Z, T ), Φ(Y, Z, T ) = Φ(Y, Z, T + 2π) (2.6)

and three symmetric wave conditions:

Φ(Y, Z, T ) = Φ(−Y, Z, T ), Φ(Y, Z, T ) = −Φ(Y, Z, −T ), (2.7)

Φ(Y, Z, T ) = −Φ(π − Y, Z, π − T ). (2.8)
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Figure 1. Surface shapes H (Y, 0) = cos Y + B2 cos 2Y at T =0 in the case of resonant
waves: (a) B2 = −0.4 < 0, Ymax = arccos(1/1.6) ≈ 0.896, Ymin = π; (b) B2 = 0.4 > 0, Ymax = 0,
Ymin = arccos(−1/1.6) ≈ 2.246.

Now, we introduce the wave steepness

ε =
1

2
[H (0, 0) − H (π, 0)], (2.9)

which is half the peak-to-trough height for non-resonant waves at T = 0. In the
case of non-resonant waves, H (0, 0) and H (π, 0) correspond to the maximum
and minimum heights, respectively; this is not necessarily true for resonant waves.
For example, consider H (Y, 0) = cos Y + B2 cos 2Y for −π � Y � π, and let H (Y, 0)
have the maximum value Hmax = max[H (Y, 0)] at Y = ± Ymax and the minimum
value Hmin = min[H (Y, 0)] at Y = ± Ymin . In the case |B2| � 1/4, which corresponds
to non-resonant waves (|B2| � 1), Ymax = 0 and Ymin = π. In the case B2 < −1/4,
Ymax = arccos[−1/(4B2)] and Ymin = π, and in the case B2 > 1/4, Ymax =0 and
Ymin = arccos[−1/(4B2)], both cases correspond to resonant waves (B2 = O(1)), shown
in figure 1. Therefore, it is useful to introduce the effective wave steepness

ε∗ =
1

2
(Hmax − Hmin),

which represents half the difference of the maximum height Hmax and the minimum
height Hmin at T = 0.

The wave steepness defined in (2.9) is an overestimate for short-crested waves
because the surface elevation H is normalized by the incident wavenumber K as in
(2.1). Instead, we should use the wavenumber (or wavelength) of a short-crested wave
for normalization when estimating the wave steepness. Hence, it is reasonable to use
the actual wave steepness ε̃ defined as

ε̃ =

{
π[η(0, 0, 0) − η(0, λy, 0)]/λy for 0◦ � θ � 45◦,

π[η(0, 0, 0) − η(λx, 0, 0)]/λx for 45◦ � θ � 90◦,

where λx and λy denote the x and y direction wavelengths of the short-
crested wave, respectively. Using H (π, 0) = H (0, π) obtained from (2.8) and
2π/K = λx sin θ = λy cos θ , we can express the actual wave steepness as

ε̃ = ε max(cos θ, sin θ), (2.10)

where max(a, b) denotes the maximum of a and b.
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Now, we give two limiting conditions for short-crested waves. The limiting condition
of the standing wave corresponds to

A∗
c = −1

g

Dφz

Dt
= 1 at z = η(0, 0, 0), (2.11)

which implies that the acceleration of a fluid particle at the crest (called the downward
crest fluid acceleration) is equal to the gravitational acceleration g at t = 0 for the
limiting wave. The limiting condition (2.11) is derived from the exact relation (Bridges
2009)

Dφx

Dt
+

(
g +

Dφz

Dt

)
ηx = 0, (2.12)

because Dφx/Dt = 0 and ηx 	= 0 at the crest for the limiting wave. The limiting
condition of the two-dimensional progressive wave corresponds to

V ∗
c =

φx

c
= 1 at z = η(ct0, 0, t0), (2.13)

which means that the fluid particle velocity at the crest, x0 = ct0 (called the crest
velocity) agrees with the phase velocity c for the limiting progressive wave. The
limiting condition (2.13) is derived from the usual kinematic boundary condition:

(φX − c)ηX = φz, X ≡ x − ct

for progressive waves because φz = 0 and ηX 	= 0 at the crest for the limiting wave. It
is important to note that A∗

c =0 if V ∗
c = 1, while V ∗

c = 0 if A∗
c = 1 (ΦZT = −G) because

A∗
c = −ΦZT (1 − p2ΦT )/G and V ∗

c = p2ΦT at the crest. In the case of short-crested
waves, fluid acceleration is not necessary to reach the maximum at the crest and
its direction is not necessarily vertically downwards. Hence, (2.11) is not suitable,
and (2.13) may also be inappropriate. Therefore, generalizing (2.11) and (2.13), we
introduce the following two limiting conditions for short-crested waves

Ac =
1

g

∣∣∣∣ D

Dt
∇φ

∣∣∣∣ =
1

g

√(
Dφx

Dt

)2

+

(
Dφy

Dt

)2

+

(
Dφz

Dt

)2

= 1 at z = η(x0, y0, t0),

(2.14)
which means that the maximum acceleration of a fluid particle on the surface (called
the surface fluid acceleration) is equal to the gravitational acceleration g for the
limiting wave at t = 0, and

Vc =
φx

c
= 1 at z = η(x0, y0, t0), (2.15)

which implies that the maximum fluid particle velocity in the x direction on the free
surface (called the surface velocity) is equal to the phase velocity c = ω/(pK) for the
limiting wave.

3. Numerical method for computing short-crested waves
We can express the velocity potential as a solution of Laplace’s equation (2.2) with

a truncated series under (2.5)–(2.8) as follows:

Φ(Y, Z, T ) =

N∑
k=0

N∑
j=1

Akj cos(kY ) exp(αkjZ) sin(jT ), αkj =
√

k2q2 + j 2p2,

A = {Akj } = {A11, A02, A22, A13, A31, A33, . . . , ANN},

⎫⎪⎬
⎪⎭ (3.1)
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where unknown coefficients Akj are non-zero due to (2.8) only if k + j is even, and N

is the truncation number. The number of unknowns (Akj and G) is N(N + 1)/2 + 1.
We use Galerkin’s method to obtain the same number of independent relations as
unknowns. Substituting (3.1) into (2.3), we numerically obtain the free surface profile

Z = H (Y, T ) = H (Y, T ; A, G) (3.2)

by Newton’s method. Note that H (Y, T ) and Φ(Y, Z, T ) also depend on the
unknowns A and G. When θ = 90◦, the velocity potential and the surface profile are
expressed by

Φ(Z, T ) =

N−1∑
j=1

Aj exp(jZ) sin(jT ), Z = H (T ) (3.3)

instead of by (3.1) and (3.2). Substituting (3.2) into (2.4), we obtain the independent
relations:

Flm(A, G) =

∫ π

0

dY

∫ π

0

dT Q(Y, H (Y, T ; A, G), T ; A, G) cos(lY ) sin(mT ) = 0, (3.4)

which are evaluated with an M-point Fourier transform. The number of independent
relations (3.4) is M(M + 1)/2 because (3.4) is trivial due to (2.8) if l + m is odd. We
obtain the same number of independent relations as unknowns Akj if M = N . The
N-point is, however, too small to evaluate the integral (3.4) accurately in obtaining
almost limiting waves, and hence we set M >N . Therefore, we can obtain N(N +1)/2
independent relations (3.4) for 0 � l � N and 1 � m � N , satisfying l + m is odd.
Another independent relation is expressed by

W (A, G) = 2ε − H (0, 0; A, G) + H (π, 0; A, G) = 0, (3.5)

which is related to the wave steepness (2.9). Instead, we use the fixed fundamental
mode condition

W (A, G) = ε − A11 = 0,

when calculating bifurcation branches for resonant waves, and the crest velocity
condition

W (A, G) = ε − V ∗
c = ε − p2ΦT = 0,

is useful when θ = 85◦ and 90◦.
Finally, we obtain a sufficient number of independent relations and we can solve

the nonlinear equations (3.4) and (3.5) for Akj and G by Newton’s method for various
values of ε and θ if an initial solution of iteration is given for ε0 and θ0. The θ-fixed
condition, θ = θ0, is used in almost all cases but the ε-fixed condition, ε = ε0, is used
for calculating a distinct branch such as a loop, shown in figure 6(b). Here the third-
order short-crested wave obtained by Hsu et al. (1979) is used as the initial solution
of iteration. We stop the iteration if the maximum difference between the unknowns
before an iteration and that after the iteration is smaller than 10−9. Calculation of
the Jacobian matrix, which is necessary for Newton’s method, is shown in Appendix.

4. Convergence of solutions
We examine the convergence of solutions by considering the dependence of

coefficients Akj on k and j for almost limiting waves in the cases θ = 0◦, 25◦, 40◦,
70◦ and 90◦. Figure 2 shows |Akj | as a function of the maximum of k and j for six
cases. In all these cases except for (d ) |Akj | is less than 10−7 for max(k, j ) = N . In
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Figure 2. The absolute value of the coefficient Akj as a function of max(k, j ): (a) θ =0◦,
Ac = 0.9986; (b) θ = 25◦, Ac = 0.9942; (c) θ = 40◦, Ac = 0.9781; (d ) θ = 70◦, Vc = 0.9871,
ε = 0.4788 = εmax ; (e) θ = 70◦, Vc = 0.5369, ε = 0.4 ≈ 0.84εmax ; (f ) θ =90◦, Vc = 0.9630,
ε = 0.4414. N = 25, M = 28 for (a)–(e) and N = 32 for (f ).

the case of (d ), |Akj | � 10−4 for max(k, j ) = N , but because |Akj | decreases rapidly
for 22 � max(k, j ) � N as max(k, j ) increases it is expected that |Akj | < 10−7 for
larger values of N . Even for the worst case of θ =70◦ the convergence becomes much
better for the wave steepness of ε ≈ 0.84εmax (a little smaller than the maximum wave
steepness) in the case of (e) than for the maximum wave steepness εmax in the case of
(d ). Therefore, the convergence is reasonably satisfactory.

Table 1 lists the maximum wave steepness εmax and the corresponding surface fluid
acceleration Ac for various values of N and M in the case θ = 25◦. It is possible to
calculate the short-crested waves up to Ac = 0.99 . . . in the cases N =20, 25 and up to
Ac = 0.90 . . . in the case N = 30. We treat a square matrix of size N(N + 1)/2 + 2 in
Newton’s method; the truncation number N of 30 is probably too large to accurately
calculate the matrix to double precision due to rounding errors. Hence, N = 25 and
M = 28 are used in all cases except for θ =90◦. This table also indicates that the most
significant figure is three for calculating the maximum wave steepness.

Figure 3 shows the almost limiting wave profile near the crest in the case of a
standing wave (θ = 0◦) for Ac = 0.9986, N = 25 and M = 28. This figure suggests that
the enclosed crest angle of the limiting wave is 90◦, which is the well-known enclosed
crest angle of the standing wave (Penney & Price 1952). The velocity potential Φ is
expanded in a Fourier series (3.1), although the wave profile has a sharp crest. The
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������N
M

26 27 28 29

20 (0.7954, 0.9507) (0.8069, 0.9990) (0.8073, 0.9992) (0.8073, 0.9991)
25 (0.7981, 0.9071) (0.8052, 0.9935) (0.8060, 0.9942) (0.8061, 0.9938)
30 (0.7670, 0.8529) (0.7910, 0.9013) (0.7910, 0.9021) (0.7911, 0.9024)

Table 1. The maximum wave steepness εmax and the corresponding surface fluid acceleration
Ac , denoted by (εmax , Ac), for various values of N and M in the case θ = 25◦.
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Figure 3. Almost limiting wave profile near the crest in the case θ = 0◦ for Ac = 0.9986, N = 25
and M = 28: · · ·, the numerical result; —, the comparative profile H (Y, 0) =H (0, 0) − |Y | with
an enclosed crest angle of 90◦.
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Figure 4. Limiting wave profile near the crest in the case θ = 90◦ for Vc =1, N = 32: · · ·,
the numerical result; —, the comparative profile H (T ) = 0.57 − |T |/

√
3 with an enclosed crest

angle of 120◦.

Fourier expansion is generally incompatible with sharp crests. However, in this case
it is compatible because the crest is a saddle point for the pressure distribution and
the contour line for the pressure has a cusp at the saddle point (Okamura 1998).
In the case θ = 0◦, Ac = 0.9986, N = 25 and M = 28, the maximum wave steepness
εmax is 0.6280, which is consistent with that of 0.6272 for standing waves in the case
Ac =0.9998, N = 30 and M = 29 (Okamura 2003). This agreement is not surprizing
because the two methods are essentially the same.

Figure 4 shows the almost limiting wave profile near the crest with a maximum
wave steepness of 0.4414 in the case θ = 90◦, Vc = 0.9630 and N =32. The enclosed
crest angle is likely to be 120◦, although the crest is not sharp but rounded. We cannot
obtain the limiting wave with a sharp corner using the present method because we
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Figure 5. Dependence of the maximum wave steepness εmax on the incident angle θ for
N =25 and M =28, except for the case θ = 90◦ for N = 32: �, the present result; �⊥, Roberts
(1983).

expand the velocity potential Φ with a singular point at the crest in a Fourier
series (3.3). This is a shortcoming of the present method. We can, however, obtain a
maximum wave steepness of 0.4414, which is consistent with 0.44316 for the limiting
two-dimensional progressive wave (Williams 1981). Therefore, the present method is
useful for obtaining the almost limiting wave profile (except in the neighbourhood
of the crest) and for evaluating the maximum wave steepness of two-dimensional
progressive waves.

It is important to note that (i) the crest is a singular point for the limiting progressive
wave, whereas it is a saddle point in the pressure distribution for the limiting standing
wave and (ii) only the 25th or 32nd order solution, which is expanded in a Fourier
series in physical space without mapping, accurately expresses almost limiting waves,
including two-dimensional progressive waves.

5. Numerical results
5.1. Maximum wave steepness and harmonic resonance

We examine the maximum wave steepness εmax for various incident angles θ . Figure 5
shows the present result for the maximum wave steepness as well as that obtained by
Roberts (1983), who estimated the maximum wave steepness from the poles of Padé
approximants. His result is qualitatively consistent with the present one, which is a
little surprizing because his method cannot treat harmonic resonance. There seems to
be two gaps caused by harmonic resonance: one is around θ =12◦ and the other is
around θ = 55◦. Harmonic resonance occurs if the linear wave frequency Ω(kx, ky) of
a short-crested wave satisfies

Ω(jkx, lky) = jΩ(kx, ky), (5.1)

where Ω(kx, ky) = g(k2
x + k2

y)
1/4 is the linear dispersion relation (Roberts 1983). In

linear wave theory, (5.1) implies that the wave frequency of the (j, l)th harmonic
mode coincides with j times that of the fundamental mode. Three typical resonant
angles are

θc = 0◦ for A42, θc = 52.2◦ for A62, θc = 36.7◦ for A11,3.
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θ 0 10 10 25 40 47.5 50 70 85 90

εmax 0.6280 0.5091 (0.3265) 0.8060 0.7393 0.7387 0.7010 0.4788 0.4373 0.4414
ε∗
max 0.6280 0.5091 (0.3441) 0.8066 0.7410 0.7387 0.7010 0.4831 0.6702 0.4414

Ac 0.9986 (0.7603) 0.9910 0.9942 0.9781 0.9993 0.6883 0.6804 0.4842 0.6135
A∗

c 0.9986 (0.7603) 0.4844 0.9823 0.8453 0.2051 0.2972 0.0667 0.0477 0.1545
Vc 0 0.0201 0.0119 0.2083 0.5331 0.9660 0.9468 0.9871 0.9903 0.9630
V ∗

c 0 0.0201 0.0108 0.2076 0.5189 0.9660 0.9468 0.9871 0.9903 0.9630

Table 2. The maximum wave steepness εmax , maximum effective wave steepness ε∗
max , surface

fluid acceleration Ac , downward crest fluid acceleration A∗
c , surface velocity Vc and crest

velocity V ∗
c for various incident angles θ . N = 25, M =28 for 0◦ � θ � 85◦; N = 32 for θ = 90◦.

There is a peak at θ = 25◦ and hence the maximum wave steepness for θ =25◦ is the
largest for all incident angles θ , and its value is 1.8 times that of a two-dimensional
progressive wave.

Table 2 lists the maximum wave steepness εmax , the maximum effective wave
steepness ε∗

max , the surface fluid acceleration Ac, the downward crest fluid acceleration
A∗

c , the surface velocity Vc and the crest velocity V ∗
c for various incident angles θ .

The following results can be obtained from this table. Firstly, the maximum wave
steepness εmax differs little from the maximum effective wave steepness ε∗

max for θ =10◦,
25◦, 40◦ and 70◦ because there is a possibility that εmax is not the maximum wave
steepness for resonant waves, as has already been explained in the discussion following
(2.9). Secondly, limiting waves with the maximum wave steepness satisfy the limiting
conditions Ac = 1 and Vc = 1 approximately for 0◦ � θ � 47.5◦ and 47.5◦ � θ � 90◦

respectively, except for θ = 10◦. Thirdly, Ac 	= A∗
c except for θ = 0◦ and the left column

of θ = 10◦, while Vc =V ∗
c for 47.5◦ � θ � 90◦. This means that the limiting condition

of the short-crested wave is inconsistent with that of the standing wave (2.11) but
is consistent with the generalized condition (2.14) in the case 0◦ < θ � 47.5◦, while
it is consistent with that of the two-dimensional progressive wave (2.13) in the case
47.5◦ � θ < 90◦.

Figure 6 shows four bifurcation diagrams in the (A11, A42) plane. This bifurcation,
which is related to harmonic resonance for θc = 0◦, is supercritical. The bifurcation
point shifts to the right as θ increases, while it approaches the origin as θ → 0◦,
as expected. The closed circle and the open square denote the almost limiting wave
with Ac ≈ 1 and the highest wave with the maximum wave steepness respectively,
and an endpoint without any symbol corresponds to neither the almost limiting
nor the highest wave. For example, let us consider the case θ = 11.6◦ shown in
figure 6(c). The surface fluid acceleration Ac is 0.5245 at the endpoint without any
symbol, (A11, A42) = (0.338, −0.0084), on the lower branch. This acceleration is nearly
half that in the limiting wave, while there is no limiting wave on the loop branch.
Thus, we cannot obtain an almost limiting wave in the case θ = 11.6◦ in the present
calculation, although the endpoint of the lower branch may correspond to the limiting
wave in the case θ = 10◦. The reason for this is currently unknown. In the case θ = 7◦,
as A11 increases just beyond the bifurcation point, the supercritical bifurcation gives
rise to three solutions: two resonant branches with a larger value of |A42| and one
non-resonant branch with a smaller value of |A42|. The highest wave (�) does not
coincide with the almost limiting wave with Ac ≈ 1 (�) in this case, as well as in the
case θ = 10◦. The data for these waves in the case θ =10◦ are listed in table 2. The
left and right columns for θ = 10◦ in this table correspond to a non-resonant highest
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Figure 6. Four bifurcation diagrams in the (A11, A42) plane: (a) θ =7◦; (b) θ = 10◦; (c) θ =
11.6◦; (d ) θ = 13◦. �: the almost limiting wave with Ac ≈ 1; �: the highest wave with ε = εmax .

wave with a smaller value of Ac and a resonant almost limiting wave with a smaller
value of εmax . The value in the round brackets is smaller than the corresponding
value in the other column. The endpoints of the resonant and non-resonant branches
approach each other as θ increases from 7◦, and the two branches nearly form a loop
without the limiting wave at θ = 10◦. It becomes a true loop with a little increase
in θ and this loop becomes smaller as θ increases. Finally, it disappears in the case
θ =11.7◦. The disappearance of the loop can be seen in figure 6(b–d ). The harmonic
resonance related to A42 disturbs the formation of the limiting wave and hence the
maximum wave steepness decreases as θ increases for 0◦ � θ � 12◦ as shown in
figure 5. The maximum wave steepness increases rapidly as θ increases beyond about
12◦ because of the small influence of harmonic resonance. Therefore, there is a gap
around θ =12◦.

Figure 7 shows four bifurcation diagrams in the (A11, A62) plane. This bifurcation,
which is related to harmonic resonance for θc =52.2◦, is subcritical. Figures 7(a) and
7(b) confirm that this bifurcation occurs for θ > θc. In the case θ = 55◦, the almost
limiting wave with Ac ≈ 1 (�) is a resonant wave, while the highest and almost limiting
wave with ε = εmax and Vc ≈ 1 (◦�) is a non-resonant wave. In the case θ = 60◦, the
bifurcation point is near the point related to the highest wave or the almost limiting
wave and hence the harmonic resonance disturbs the formation of the highest wave
and the limiting wave. However, the harmonic resonance related to A62 does not
affect the formation of the limiting wave except for θ = 60◦, because the non-resonant
branch for large A11 is distinct from the two resonant branches in the subcritical
bifurcation unlike the cases θ = 7◦, 10◦ in the supercritical bifurcation. Thus the non-
resonant branch and any one of the resonant branches never form a loop. Therefore,
there must be no gap around θ =55◦. This statement may appear to be incompatible
with the result displayed in figure 5. To check this, we investigate the maximum actual
wave steepness ε̃max defined in (2.10) instead of the maximum wave steepness εmax .
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Figure 7. Four bifurcation diagrams in the (A11, A62) plane: (a) θ = 50◦; (b) θ =55◦; (c)
θ = 60◦; (d ) θ = 65◦. �: the almost limiting wave with Ac ≈ 1; �: the almost limiting wave with
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Figure 8. Dependence of the maximum actual wave steepness ε̃max , defined in (2.10), on the
incident angle θ . These data are the same as those in figure 5.

Figure 8 shows the dependence of ε̃max on θ . This figure indicates that the gap around
θ = 12◦ still exists, whereas the gap around θ = 55◦ disappears.

In figure 7(a), the branch is cut off with a small distance near A11 = 0.5. This
cutoff is due to harmonic resonance A11,3, as shown in figure 9. There are very
many (probably infinite) solutions due to harmonic resonance for given values of
θ and ε (Roberts 1983). However, as the resonance moves to higher harmonics, it
becomes much weaker. Hence, we cannot distinguish between the resonant branch
and the non-resonant branch for higher harmonic resonance, as shown in figures 7(a)
and 9(a). Therefore, higher harmonic resonance is not so important.
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Figure 9. (a) Enlargement of the bifurcation diagram in the (A11, A62) plane shown in
figure 7(a). (b) The corresponding bifurcation diagram in the (A11, A11,3) plane. �: the almost
limiting wave with Ac ≈ 1; �: the almost limiting wave with Vc ≈ 1; �: the highest wave with
ε = εmax .

5.2. Limiting wave profiles

We investigate the limiting profiles of short-crested waves for various incident angles
θ . In general, in the case 0◦ � θ � 47.5◦, the short-crested wave has the limiting wave
profile with Ac = 1 given in (2.14), which corresponds to the limiting condition of
the standing wave, while in the case 47.5◦ � θ � 90◦, the short-crested wave has the
limiting wave profile with Vc = 1 given in (2.15), which corresponds to the limiting
condition of the two-dimensional progressive wave. The enclosed crest angles are 90◦

and 120◦ for 0◦ � θ � 47.5◦ and 47.5◦ � θ � 90◦, respectively.
Figures 10 and 11 show, in the spatial coordinates (x∗, y∗, z∗) instead of (T , Y, Z),

the almost limiting wave profiles at t∗ = 0 with Ac = 0.9856 and 0.9756 respectively,
for θ = 7◦. These profiles correspond to the resonant wave profiles at the points
(A11, A42) = (0.195, 0.0092) and (A11, A42) = (0.225, −0.0137) on the resonant branches
in the bifurcation diagram shown in figure 6(a). It is not possible to clearly detect
any sharp crest in figures 10(a) and 11(a) at low resolution, although the profile
in figure 10(a) has a rugged surface. Figures 10(b) and 11(b) show detailed cross-
sectional views, which reveal sharp corners. There are 90◦ sharp corners at the points
(y∗, z∗) = (±0.301, 0.253) in figure 10(b) and (y∗, z∗) = (±0.624, 0.254) in figure 11(b)
with Ac = 0.9856, A∗

c = 0.1645 and Ac = 0.9765, A∗
c = 0.4766, respectively. Note that

the surface fluid acceleration Ac is not directed downward and the downward crest
fluid acceleration A∗

c is much smaller than the limiting value of 1. The crest shown in
figure 11 is flatter than that shown in figure 10, while the trough shown in figure 10 is
flatter than that shown in figure 11, because the crest becomes flatter for A42 < 0 and
the trough becomes flatter for A42 > 0 for resonant waves, as shown in figure 1. In
other words, the crest becomes flatter than the trough for resonant waves if the sign
of the fundamental mode A11 differs from that of its harmonic resonant mode A42.

Figure 12 shows the almost limiting wave profile at t∗ = 0 with Ac = 0.9942 for
θ =25◦. A perspective view is shown in figure 12(a) and three cross-sectional views
are shown in figure 12(b–d ). We cannot detect any sharp crest in figure 12(a) at low
resolution. Figure 12(c) shows the cross-sectional view, x∗ = 0, of the profile near the
peak at high resolution. The crest is certainly rounded even in the high resolution plot.
Figure 12(b) shows the cross-sectional view, y∗ = 0, of the profile near the peak at high
resolution. The wave profile reaches the maximum not at the point, (x∗, y∗) = (0, 0),
but at (x∗, y∗) = (±0.116, 0). We next examine the cross-sectional view, x∗ = 0.116,
of the profile near the peak at high resolution shown in figure 12(d ). The enclosed
crest angle is 90◦ and the direction of the surface fluid acceleration Ac is downward.
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Figure 10. (a) Almost limiting wave profile with Ac = 0.9856 for θ = 7◦, corresponding
to the point (A11, A42) = (0.195, 0.0092) in the bifurcation diagram shown in figure 6(a). (b)
Cross-sectional view, x∗ = 0, of the wave profile near the peak.

Therefore, the enclosed crest angle is 90◦ at the point where the wave profile reaches
its maximum.

Figure 13 shows the almost limiting wave profile at t∗ =0 with Ac = 0.9781 for
θ = 40◦. A perspective view is shown in figure 13(a), and two cross-sectional views are
shown in figures 13(b) and 13(c). There seems to be a sharp corner at the crest of the
limiting wave profile in figure 13(a) at low resolution. Figure 13(b) shows the cross-
sectional view, y∗ =0, of the profile near the peak at high resolution. The wave profile
reaches its maximum at the point (x∗, y∗) = (0, 0) even at high resolution. However, in
the cross-sectional view, x∗ = 0, shown in figure 13(c), the free surface forms a sharp
corner not at the point, (x∗, y∗) = (0, 0), but at the points, (x∗, y∗) = (0, ±0.0030), and
the crest angle may be 90◦. The surface fluid acceleration Ac reaches its maximum
value of 0.9781 at the corner and its direction is not downward. The surface profile
is nearly flat near the point, (x∗, y∗) = (0, 0).

Figure 14 shows the almost limiting wave profile at t∗ = 0 with Ac = 0.9993 and
Vc = 0.9660 for θ =47.5◦. A perspective view is shown in figure 14(a) and two cross-
sectional views are shown in figures 14(b) and 14(c). In this case, the limiting conditions
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Figure 11. (a) Almost limiting wave profile with Ac = 0.9756 for θ = 7◦, corresponding to
the point (A11, A42) = (0.225, −0.0137) in the bifurcation diagram shown in figure 6(a). (b)
Cross-sectional view, x∗ = 0, of the wave profile near the peak.

(2.14) and (2.15) are simultaneously satisfied, and then we can detect two enclosed
crest angles, 90◦ and 120◦, in the limiting wave profile, as shown in figure 14(a) at low
resolution. Figure 14(b) at high resolution suggests that the enclosed crest angle is
120◦ in the cross-section, y∗ = 0. The shape of the rounded crest is false because of a
shortcoming in the present method, as shown in figure 4. The shape of the profile near
the crest in figure 14(c) is wavy but may also be false because of a shortcoming in the
present method; the limiting shape should probably be similar to that in figure 13(c).

Figure 15 shows the almost limiting wave profile at t∗ = 0 with Vc =0.9871 for
θ =70◦. A perspective view is shown in figure 15(a), and two cross-sectional views,
y∗ =0 and x∗ = 0, are shown in figures 15(b) and 15(c). Note that the limiting condition
is Vc = 1 given in (2.15) for θ � 47.5◦. Figure 15(b) suggests that the enclosed crest
angle is 120◦ in the cross-section y∗ =0, although the crest is slightly rounded because
of a shortcoming in the present method.

Figure 16 shows the almost limiting wave profile at t∗ = 0 with Vc =0.9903 for
θ =85◦. A perspective view is shown in figure 16(a), and a cross-sectional view,
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Figure 12. (a) Almost limiting wave profile with Ac = 0.9942 for θ =25◦. (b) Cross-sectional
view, y∗ = 0, of the wave profile near the peak. (c) Cross-sectional view, x∗ = 0, of the wave
profile near the peak together with a comparative profile H ∗(0, y∗, 0) = H ∗(0, 0, 0) − |y∗| with
an enclosed crest angle of 90◦. (d ) Cross-sectional view, x∗ = 0.116, of the wave profile near
the peak together with a comparative profile H ∗(0, y∗, 0) = H ∗(0, 0, 0) − |y∗| with an enclosed
crest angle of 90◦.

y∗ = 0, is shown in figure 16(b). Figure 16(b) suggests that the enclosed crest angle is
120◦ in the cross-section, y∗ =0. This wave corresponds to a fully nonlinear version
of the fourth-order long-crested waves obtained by Roberts & Peregrine (1983).

Figure 17 shows the almost limiting wave profile at t∗ = 0 with Vc = 0.9871 for
θ = 55◦ in the case of harmonic resonance. This wave corresponds to the point
(A11, A62) = (0.296, 0.0539) in the bifurcation diagram shown in figure 7(c). We can
confirm that the wave contains the sixth harmonic mode A62, which is the same
order of magnitude as the fundamental mode A11. The enclosed crest angle may
be 90◦.
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Figure 13. (a) Almost limiting wave profile with Ac = 0.9781 for θ = 40◦. (b) Cross-sectional
view, y∗ = 0, of the wave profile near the peak. (c) Cross-sectional view, x∗ =0, of the wave
profile near the peak.

6. Summary and discussion
We have clarified the characteristics of resonant short-crested waves by drawing

bifurcation diagrams. In particular, the two main harmonic resonances related to A42

and A62 have been investigated in detail. The results are listed below:
(a) In general, the limiting wave is realized for 0◦ � θ � 47.5◦ if the fluid particle

acceleration is equal to the gravitational acceleration, Ac = 1 given in (2.14), while
the limiting wave is realized for 47.5◦ � θ � 90◦ if the fluid particle velocity in the x

direction at the crest is equal to the phase velocity, Vc =1 given in (2.15). The enclosed
crest angles are 90◦ and 120◦ for 0◦ � θ � 47.5◦ and 47.5◦ � θ � 90◦, respectively.
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Figure 14. (a) Almost limiting wave profile with Ac = 0.9993 and Vc = 0.9660 for θ = 47.5◦.
(b) Cross-sectional view, y∗ = 0, of the wave profile near the peak: · · ·, the numerical result; —,

the comparative profile H ∗(0, y∗, 0) = 0.93 − |y∗|/
√

3 with an enclosed crest angle of 120◦. (c)
Cross-sectional view, x∗ = 0, of the wave profile near the peak.

Therefore, waves for 0◦ � θ � 47.5◦ and 47.5◦ � θ � 90◦ have the characteristics of
standing waves and two-dimensional progressive waves, respectively.

(b) Two main harmonic resonances related to A42 and A62 undergo supercritical
and subcritical bifurcations, respectively. In the bifurcation diagram related to A42, a
loop is formed by the resonant and non-resonant branches coalescing. The maximum
wave steepness is reduced because of the formation of a loop around θ = 12◦.

(c) In the case of resonant waves, if the sign of the fundamental mode differs from
that of its harmonic resonant mode, the crest is flatter than the trough. Otherwise,
the crest is steeper than the trough, as is the case for non-resonant waves.
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Figure 15. (a) Almost limiting wave profile with Vc =0.9871 for θ = 70◦. (b) Cross-sectional
view, y∗ = 0, of the wave profile near the peak: · · ·, the numerical result; —, the comparative

profile H ∗(x∗, 0, 0) = 0.59 − |x∗|/
√

3 with an enclosed crest angle of 120◦. (c) Cross-sectional
view, x∗ = 0, of the wave profile near the peak.

(d) The highest wave does not necessarily coincide with the limiting wave, such as
θ =7◦ and 10◦.

(e) In the cases 0◦ � θ � 47.5◦, a sharp corner does not necessarily appear at the
crest, x∗ = y∗ = 0. The surface fluid acceleration Ac reaches the limiting value, Ac = 1,
at the corner and its direction is not downward. In the cases 47.5◦ � θ � 90◦, a sharp
corner appears at the crest, x∗ = y∗ = 0. The crest velocity Vc reaches the limiting
value, Vc = 1, at the corner, and the crest velocity is equal to the surface velocity,
Vc = V ∗

c , as in two-dimensional progressive waves.
The present method is a powerful method for calculating almost limiting short-

crested waves with Ac ≈ 1, and then the wave profiles clearly show that the enclosed
crest angle is 90◦. Furthermore, the present method is also a powerful method for
calculating almost limiting short-crested waves with Vc ≈ 1, and then we can obtain
a reliable value for the maximum wave steepness. However, we cannot obtain the
limiting wave profile with a sharp corner for 47.5◦ � θ � 90◦ because the velocity
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Figure 16. (a) Almost limiting wave profile with Vc = 0.9903 for θ = 85◦. (b) Cross-sectional
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point (A11, A62) = (0.297, 0.0533) in the bifurcation diagram shown in figure 7(c).
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potential Φ at y∗ = 0 is expressed as

Φ ∝ �[(x∗ + iz∗)3/2]

near the crest (e.g. x∗ = z∗ =0) and thus the crest is a singular point similar to that in
a two-dimensional limiting progressive wave (Stokes 1847). When 0◦ � θ � 47.5◦, we
can obtain an almost limiting wave profile with a sharp corner because the velocity
potential Φ at x∗ = x0 is expressed as

Φ ∝ z̄2 − ȳ2

near the crest (e.g. ȳ = z̄ = 0, where (ȳ, z̄) is obtained from (y, z) by the rotation
transformation to ensure that the surface fluid acceleration is downwards). Thus, the
crest is not a singular point but a saddle point similar to that in the limiting standing
wave (Penney & Price 1952; Okamura 1998). We cannot prove that the crest is a
saddle point, but have indirect numerical evidence that the limiting wave profile with a
sharp corner is obtained by taking Taylor series expansion about the crest. Therefore,
the present method is a powerful method for investigating the characteristics
of limiting short-crested waves, except for the sharp corner in limiting waves
with Vc ≈ 1.

I would like to acknowledge useful discussion with Dr M. Ioualalen. I also thank
one of the referees to inform me of the exact relation (2.12).

Appendix. Calculation of the Jacobian matrix
Here, we show how to calculate the elements of the Jacobian matrix, ∂Flm/∂Akj ,

∂Flm/∂G, ∂W/∂Akj , ∂W/∂G.

∂Flm

∂Akj

=

∫ π

0

dT

∫ π

0

dY

(
∂Q

∂Akj

+
∂Q

∂Z

∂H

∂Akj

)
cos(lY ) sin(mT ). (A 1)

Since we have no information about ∂H/∂Akj in the present formulation, we must
eliminate it by using the relation,

∂P

∂Akj

+
∂P

∂Z

∂H

∂Akj

= 0, (A 2)

which is obtained from (2.3). Elimination of ∂f/∂Akj from (A 1) and (A 2)
gives

∂Flm

∂Akj

=

∫ π

0

dT

∫ π

0

dY

(
∂Q

∂Akj

− ∂Q

∂Z

∂P/∂Akj

∂P/∂Z

)
cos(lY ) sin(mT ).

Similarly, we obtain the other components of the Jacobian matrix:

∂Flm

∂G
=

∫ π

0

dT

∫ π

0

dY

(
∂Q

∂G
− ∂Q

∂Z

∂P/∂G

∂P/∂Z

)
cos(lY ) sin(mT ),

∂W

∂Akj

=
∂P/∂Akj

∂P/∂Z

∣∣∣∣
Y=T =0

− ∂P/∂Akj

∂P/∂Z

∣∣∣∣
Y=π,T =0

,

∂W

∂G
=

∂P/∂G

∂P/∂Z

∣∣∣∣
Y=T =0

− ∂P/∂G

∂P/∂Z

∣∣∣∣
Y=π,T =0

.
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Practical calculation of the Jacobian matrix requires the following relations:

∂P

∂Z
= −ΦZT + p2ΦT ΦZT + q2ΦY ΦYZ + ΦZΦZZ + G,

∂P

∂Akj

=
[
j (p2ΦT − 1) cos(kY ) cos(jT ) − q2kΦY sin(kY ) sin(jT )

+ αkjΦZ cos(kY ) sin(jT )
]
eαkj Z,

∂P

∂G
= Z,

∂Q

∂Z
= ΦZT T + p2ΦZT (−2ΦT T + p2ΦT ΦT T + q2ΦY ΦYT + ΦZΦZT ) + p2ΦT (−2ΦZT T

+ p2ΦZT ΦT T + p2ΦT ΦZT T + q2ΦYZΦYT + q2ΦY ΦYZT + ΦZZΦZT + ΦZΦZZT )

+ q2ΦYZ(−2ΦYT + p2ΦT ΦYT + q2ΦY ΦYY + ΦZΦYZ) + q2ΦY (−2ΦYZT

+ p2ΦZT ΦYT + p2ΦT ΦYZT + q2ΦYZΦYY + q2ΦY ΦYYZ + ΦZZΦYZ + ΦZΦYZZ)

+ ΦZZ(−2ΦZT + p2ΦT ΦZT + q2ΦY ΦYZ + ΦZΦZZ + G) + ΦZ(−2ΦZZT

+ p2Φ2
ZT + p2ΦT ΦZZT + q2Φ2

YZ + q2ΦY ΦYZZ + Φ2
ZZ + ΦZΦZZZ),

∂Q

∂Akj

=
[
2j

{
p2(−ΦT T + p2ΦT ΦT T + q2ΦY ΦYT + ΦZΦZT + αkjΦT ΦZ) − αkjΦZ

}
× cos(kY ) cos(jT ) +

{
−j 2 + αkj (αkjΦZ − 2ΦZT + p2ΦT ΦZT + 2ΦZΦZZ + G)

+ p2ΦT (2j 2 − p2j 2ΦT + αkjΦZT )+q2ΦY (2αkjΦYZ − q2k2ΦY )
}
cos(kY ) sin(jT )

− 2kq2(−ΦYT + p2ΦT ΦYT + q2ΦY ΦYY + ΦZΦYZ + αkjΦY ΦZ) sin(kY ) sin(jT )

+ 2q2kjΦY (1 − p2ΦT ) sin(kY ) cos(jT )
]
eαkj Z,

∂Q

∂G
= ΦZ.
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